# Scientific Publications

### Published Papers

M.A. Ferreira, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Multicomponent coagulation systems: existence and non-existence of stationary non-equilibrium solutions. To appear in J. Stat. Phys. (2023)

J.W. Jang, B. Kepka, A. Nota, J.J.L. Velázquez, Vanishing Angular Singularity Limit to the Hard-Sphere Boltzmann Equation, J. Stat. Phys. Vol. 190, 77 (2023) [article]

A. Nota, J.J.L. Velázquez, Homoenergetic solutions of the Boltzmann equation : the case of simple-shear deformations. Mathematics in Engineering Vol. 5, Issue 1, 1-25 (2023)

A. Nota, J.J.L. Velázquez, R. Winter, Interacting particle systems with long range interactions: approximation by tagged particles in random fields. arXiv:2103.09740 (2022). Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. DOI 10.4171/RLM/977

A. Nota, C. Saffirio, S. Simonella, Derivation of the generalized linear Boltzmann equation for magnetotransport. Ann. Inst. H. Poincaré Probab. Statist. Vol. 58, Issue 2, 1228-1243 (2022)

M.A. Ferreira, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Localization in stationary non-equilibrium solutions for multicomponent coagulation systems. Commun. Math. Phys. Vol. 388, Issue 1, 479-506 (2021)

G. Albi, S. Merino-Aceituno, A. Nota, M. Zanella, Preface, SEMA SIMAI Springer Series, 2021, 25, pp. v–vii

A. Nota, J.J.L. Velázquez, R. Winter, Interacting particle systems with long range interactions: scaling limits and kinetic equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. Vol. 32 , Issue 2, 335–377 (2021) DOI 10.4171/rlm/939

M.A. Ferreira, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Stationary non-equilibrium solutions for coagulation systems. Arch. Rational Mech. Anal. Vol. 240, 809-875 (2021) https://doi.org/10.1007/s00205-021-01623-w

A. Bobylev, A. Nota, J.J.L. Velázquez, Self-similar asymptotics for a modified Maxwell-Boltzmann equation in systems subject to deformations. Commun. Math. Phys. Vol. 380, 409-448 (2020)[article]

R.D. James, A. Nota, J.J.L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Hyperbolic-dominated case. Nonlinearity Vol. 33, Issue 8, 3781-3815 (2020) [article]

B. Lods, A. Nota, F, Pezzotti, A Kac model for annihilation of particles, J. Nonlinear Sci. (2020) [article]

B. Lods, A. Nota, R. Winter, Kinetic description of a Rayleigh Gas with annihilation, J. Stat. Phys. Vol. 176, Issue 6, 1434–1462 (2019) [article]

R.D. James, A. Nota, J.J.L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Collision-dominated case, J. Nonlinear Sci. https://doi.org/10.1007/s00332-019-09535-6 (2019) [article]

B. Niethammer, A. Nota, S. Throm, J.J.L. Velázquez, Self-similar asymptotic behavior for the solutions of a linear coagulation equation, J. Differential Equations Vol. 266, Issue 1, pp. 653-715 (2019) [article]

R.D. James, A. Nota, J.J.L. Velázquez, Self-similar profiles for homoenergetic solutions of the Boltzmann equation: particle velocity distribution and entropy, Arch. Rational Mech. Anal. Vol. 231, Issue 2, pp. 787-843 (2019) [article]

J. Lukkarinen, M. Marcozzi and A. Nota, Summability of connected correlation functions of coupled lattice fields, J. Stat. Phys. Vol. 171, Issue 2, pp. 189-206 (2018) [article]

A. Nota, S. Simonella, J.J.L. Velázquez, On the theory of Lorentz gases with long range interactions, Rev. Math. Phys. Vol. 30, No. 3, 1850007 (2018) [article]

A. Nota, J.J.L. Velázquez, On the growth of a particle coalescing in a Poisson distribution of obstacles, Commun. Math. Phys. Vol. 354, Issue 3, pp. 957-1013 (2017) [article]

J. Lukkarinen, M. Marcozzi and A. Nota, Harmonic chain with velocity flips: thermalization and kinetic theory, J. Stat. Phys. Vol. 165, Issue 5, pp. 809-844 (2016) [article]

M. Marcozzi and A. Nota, Derivation of the linear Landau equation and linear Boltzmann equation from the Lorentz model with magnetic field, J. Stat. Phys. Vol.162, Issue 6, pp. 1539-1565 (2016) [article]

G. Basile, A. Nota, F. Pezzotti and M. Pulvirenti, Derivation of the Fick's Law for the Lorentz Model in a low density regime, Commun. Math. Phys. Vol. 336, Issue 3, pp. 1607-1636 (2015) [article]

A. Nota, Diffusive limit for the random Lorentz gas, From Particle Systems to Partial Di erential Equations II, Springer Proceedings in Mathematics & Statistics, Vol. 129, pp. 273-292 (2015) [article]

G. Basile, A. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, J. Stat. Phys. Vol. 155, Issue 6, pp. 1087-1111 (2014) [article]

### Conference Proceedings

A. Nota, C. Saffirio, J.L.L. Velázquez, Mini-Workshop: Lorentz Gas Dynamics: particle systems and scaling limits. Oberwolfach Rep. 16 (2019), no. 1, 617-661, DOI:10.4171/OWR/2019/10

A. Nota, On the derivation of linear kinetic equations from a Lorentz Gas with long-range interactions, Oberwolfach Reports, Large Scale Stochastic Dynamics, Report No. 42/2019, DOI: 10.4171/OWR/2019/42

A. Nota, Kinetic description for the Lorentz Gas with long-range interactions, Oberwolfach Reports, Classical and Quantum Mechanical Models of Many-Particle Systems, Report No. 56/2017, DOI: 10.4171/OWR/2017/56

### Preprints

M.A. Ferreira, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Asymptotic localization in multicomponent mass conserving coagulation equations. arXiv:2203.08076

M.A. Ferreira, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Non-power law constant flux solutions for the Smoluchowski coagulation equation. arXiv:2207.09518

M.A. Ferreira, E. Franco, J. Lukkarinen, A. Nota, J.J.L. Velázquez, Coagulation equations with source leading to anomalous self-similarity. arXiv:2305.16921

### Notes

A. Nota, Fick's Law for the Lorentz Model in a weak coupling regime arXiv:1411.6474 [preprint]

### Ph.D. Thesis

From microscopic dynamics to macroscopic equations: scaling limits for the Lorentz gas, Alessia Nota (2014)